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Introduction: The recent global outbreak of coronavirus disease 2019 (COVID-19) has become a pandemic
with a lot of sufferers. Excessive inflammation, exaggerated immune response, with ultimate apoptosis contribute
to COVID-19 pathology that progress to acute lung acute respiratory distress.

Objective: To shed a light on the likely benefits of the oral phosphodiesterase 5 (PDE5) inhibitor adjuvant role
in combating COVID-19 infection.

Methods: A literature review was performed in the PubMed/Medline database, Scopus, Cochrane Library,
EMBASE, Academic Search Complete, Google Scholar, and CINAHL databases using the keywords COVID-
19; phosphodiesterase-5 inhibitors; cytokine storm; respiratory distress.

Results: Despite the worsening trends of COVID-19, still no drugs are validated to have significant clinical
efficacy in the treatment of patients with COVID-19 in large-scale studies. While the progress toward a curative
agent and/or vaccine is certainly hopeful, the principal limiting factor in such public health emergencies is always
the time. Therefore, a preexisting licensed therapeutic(s) might offer a reprieve to the healthcare systems oper-
ating at the edge of capacity. In this context, the innovation of oral PDE5 inhibitors with their valuable effects on
erection have provided a breakthrough in the treatment of erectile dysfunction and opened new fields of clinical
application for this class of drugs. Oral PDE5 inhibitors have been demonstrated to possess many beneficial
useful additional implications with acknowledged anti-inflammatory, antioxidant, immune response regulation,
and antiapoptotic properties. These properties have been elucidated through the nitric oxide/soluble guanylyl
cyclase/cyclic guanylate monophosphate pathway in addition to the emerged hemeoxygenase-1 enzyme as well as
hydrogen sulfide pathways. These properties could support repurposing oral PDE5 inhibitors' potential adjuvant
use in targeting different aspects of COVID-19 infection.

Conclusion: Oral PDE5 inhibitors retain several acknowledged off-labeled useful implications with anti-
inflammatory, antioxidant, immune response regulation, and antiapoptotic properties. These properties may
support repurposing oral PDE5 inhibitors' potential adjuvant use in the protocols combating COVID-19
manifestations. Mostafa T. Could Oral Phosphodiesterase 5 Inhibitors Have a Potential Adjuvant Role
in Combating Coronavirus Disease 2019 Infection? Sex Med Rev 2021;9:15e22.
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INTRODUCTION

Since December 2019, a series of global health concern pneu-
monia cases were reported inWuhan, Hubei Province, China with
coronavirus disease 2019 (COVID-19) with substantial mortal-
ities. The etiological agent of COVID-19 has been confirmed as a
novel coronavirus, now known as severe acute respiratory
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syndrome coronavirus 2 (SARS-CoV-2).1,2 Coronaviruses have
large (~30-kb) single-stranded, positive-sense RNA genomes that
are divided into a 50 two-thirds and a 30 third. The first two-thirds
code for 2 large polyproteins that are proteolytically cleaved into
non-structural proteins essential for the production of new viral
genetic material. The rest codes for its structural proteins and carry
the accessory genes that produce virions and alter the host
response.3,4 Asymptomatic or minimally symptomatic infection
with COVID-19 can result in silent transmission to large numbers
of people, resulting in an extension of the disease with an overall
increase in its morbidity and mortality.

Currently, no treatment for SARS-CoV-2 is approved because
of the lack of evidence, although several protocols have been
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presented such as antiviral therapy, corticosteroid therapy, vita-
mins, antimalarial, and so on. However, there is still a lack of
precise treatment(s) for the harsh COVID-19 manifestations.5,6

Although the progress toward a curative agent and/or vaccine
is certainly hopeful, the principal limiting factor in this public
health emergency is always the time factor. Therefore a preex-
isting licensed molecule(s) might offer a reprieve to healthcare
systems operating at the edge of capacity.

Currently, oral phosphodiesterase 5 (PDE5) inhibitors, acting
on the nitric oxide/soluble guanylyl cyclase/cyclic guanylate
monophosphate (NO/sGC/cGMP) pathway, represent the first-
line therapy for erectile dysfunction with good responses.7,8

Specifically, PDE5 hydrolyzes cGMP into 50GMP by blocking
cGMP hydrolysis, potentiates the effects of cGMP, resulting in
decreased intracellular calcium, penile smooth muscle relaxation,
and vasodilatation with increased penile blood flow.9 Currently,
4 oral PDE5 inhibitors are approved by the U.S. Food and Drug
Administration (sildenafil [Viagra], vardenafil [Levitra], tadalafil
[Cialis], and avanafil [Stendra]) with good efficacy and tolerable
adverse effects.10,11

Sildenafil citrate was released in 1998, has a maximal plasma
concentration (Tmax) at 60 min on an empty stomach, and acts for
4e6 hours. Vardenafil hydrochloride was approved in 2003, has a
Tmax of 60 min on an empty stomach, and acts for up to 7 hours.
Tadalafil was approved in 2003, has a Tmax of 120 min with/
without an empty stomach, and acts up to 36 hours. Later on,
avanafil was approved in 2012 and has a Tmax of 30e45min on an
empty stomach.12 These drugs are available in different doses; sil-
denafil citrate 25, 50, 100mg; tadalafil 2.5, 5, 10, 20mg; vardenafil
hydrochloride 2.5, 5, 10, 20 mg; and avanafil 50, 100, 200 mg.

The high tolerability of oral PDE5 inhibitors, ease of
administration, and its safety margin (except if combined with
nitrates) have made these molecules an attractive tool to explore
their physiological functions, beyond its immediate prescribed
indications, with collateral benefits for a multitude of useful
implications beyond erection.13e16

This article sheds a light on the likely benefits of the adjuvant
use of oral PDE5 inhibitors in the protocols combating COVID-
19 virus infection.
METHODS

A literature review has been performed in the PubMed/Med-
line database, Scopus, Cochrane Library, EMBASE, Academic
Search Complete, Google Scholar, and CINAHL databases to
search articles published from inception to August 2020 using the
terms COVID-19; phosphodiesterase-5 inhibitors; sildenafil;
tadalafil; vardenafil; avanafil; cytokine storm; respiratory distress.
COVID-19 Pathophysiology
Many researchers focused their attention on the specific pro-

tein that allows the COVID-19 virus to infect human cells,
namely the angiotensin-converting enzyme 2 (ACE2) receptor.
This receptor provides the entry point for the virus to hook into a
wide range of non-immune cells, such as respiratory and intes-
tinal epithelial cells, endothelial cells, renal tubules, cerebral
neurons, and immune cells, such as alveolar monocytes/macro-
phages.17 In this context, oral epithelial cells and other respira-
tory tract areas have an extensive expression of ACE2, explaining
their susceptibility to viral entry.18e20 Then, the virus spreads
into the lower respiratory tract (the lungs) where epithelial cells,
in particular type II pneumocytes, express ACE2.

20 Infection in
the lungs, and especially damage of the alveoli, has been raised to
be the primary cause of morbidity in COVID-19.21

Common reported symptoms of COVID-19 are fever, cough,
myalgia, headache, diarrhea, dyspnea, pneumonia, and in some
cases acute respiratory distress syndrome. Besides, most of the
infected cases experience significant decreases in hemoglobin,
neutrophil counts, and significant increases in serum ferritin,
erythrocyte sedimentation rate, C-reactive protein, albumin, and
lactate dehydrogenase. The oxygen-carrying capacity of the
erythrocytes would, therefore, be compromised exacerbating the
difficulties experienced by these patients in maintaining a suffi-
cient partial pressure of oxygen in their alveoli.22,23

In this framework, in susceptible patients, the lung cells exhibit
intense inflammation because of its inability to exchange carbon
dioxide and oxygen frequently resulting in ground-glasselike
images and respiratory distress.24 In addition, apoptosis of the
endothelial cells damages the pulmonary microvascular and alve-
olar epithelial cells causing vascular leakage and alveolar edema that
ultimately leads to hypoxia and multiple organ failure.25

Certain patients experience severe inflammation and cytokine
storm,with overwhelming immune activation that attacks the host.
This cytokine storm includes several proinflammatory cytokines
(Interleukin [IL]-1b, IL-2, IL-6, IL 7, IL-8, IL-10, granulocyte-
macrophage colony-stimulating factor, and reactive oxygen spe-
cies) and chemokines (C-C Motif Chemokine Ligand (CCL) 2,
CCL-5, interferon gammaeinduced protein 10, macrophage in-
flammatory protein (MCP1), MIP1A (monocyte chemoattractant
protein), and CCL3 contribute to the occurrence of acute respi-
ratory distress syndrome).25e28 The accumulated mononuclear
macrophages receive activating signals through the interferon alfa/
beta receptors on their surface to produce more monocyte
chemoattractants (CCL2, CCL7, and CCL12) with additional
accumulation of mononuclear macrophages. In turn, these mac-
rophages produce higher levels of the proinflammatory cytokines
(tumor necrosis factor [TNF], -6, IL1-b, and inducible NOS), that
induce T cell apoptosis, which hinders viral clearance.29 Such rapid
viral replication and vigorous proinflammatory cytokine/chemo-
kine response induces apoptosis in the lung epithelial and endo-
thelial cells through mechanisms involving Fas-Fas ligand or
TNF-related apoptosis-inducing ligand death receptor 5.30
Rational of Oral PDE5 Inhibitor Role
Oral PDE5 inhibitors have been demonstrated to exhibit

several favorable effects and implications that might justify their
Sex Med Rev 2021;9:15e22
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ability for targeting multiple aspects in combating COVID-19
pathologic manifestations (Figure 1).
Counteracting the Angiotensin IIeMediated Downregulation
of Angiotensin II Type I Receptor
Angiotensin II (Ang II) and NO signaling pathways have been

reported to mutually regulate each other by multiple mecha-
nisms. Ang II is recognized to regulate the expression of NO
synthase and NO production, where NO downregulates the Ang
II type I (AT1) receptor. Besides, the downstream effectors of
both Ang II and NO signaling pathways also interact with each
other with a feedback mechanism.31 PDE5 inhibitors were
suggested to inhibit the intrapulmonary vasoconstriction caused
by AT1 receptor downregulation owing to SARS-CoV-2-ACE2
binding alveolar cells, bronchial epithelium, and vascular endo-
thelium through the NO/sGC/cGMP pathway.32,33

The endogenous mammalian peptide AngII is hypothesized to
prevent infection from SARS-CoV-2 in multiple ways: (i) it
normally binds to ACE2 during its degradation and hydrolysis
into angiotensin-(1e7)34 competing with the SARS-CoV-2 for
the ACE2 receptor; (ii) the binding of Ang II to the AT1 receptor
has been revealed to cause internalization and downregulation of
ACE2 through an extracellular signaleregulated kinase 1/2 and
p38 MAP kinase pathway;35,36 and (iii) Ang II has been shown
to cause AT1 receptor-dependent destruction of ACE2 through
ubiquitination and transport into lysosomes. The competitive
inhibition, downregulation, internalization, and then degrada-
tion of ACE2 decrease the intensity of viral infection by inter-
fering with host cell entry of the virus.37

Lately, Qiao et al38 reported their calculations on the in-
hibitors for the SARS-CoV-2 3CL protease and the spike protein
for the potential treatment of COVID-19. These authors showed
that the most potent promising inhibitors of the SARS-CoV-2
3CL protease include saquinavir, tadalafil, rivaroxaban, sildena-
fil, dasatinib, vardenafil, and montelukast owing to their high
docking scores (<�8.5 kcal/mol).
Pulmonary Implications

1. PDE5 inhibitors appear to be particularly appropriate in
treating pulmonary diseases because PDE5 is expressed in
high levels in the lung tissue and is highly specific for hy-
drolysis of cGMP.39

2. Sildenafil citrate and tadalafil received approval by the U.S.
Food Drug Administration and the European Medicines
Agency in 2005 and 2009, respectively, for treating pulmo-
nary arterial hypertension functional classes (FC) II and III
indication of patients with WHO-functional class and a class
IIa indication in patients with WHO-functional class IV
(men, women, newborn).40 Improved endothelial function, as
well as prevention of impaired arterial relaxation, is the
mechanism that explain the favorable effects of PDE5 in-
hibitors in these patients.41,42 Sildenafil citrate use has been
Sex Med Rev 2021;9:15e22
verified to exhibit protective effects in pulmonary arterial
hypertension cases by suppressing multiple cytokines involved
in the neutrophil and mononuclear cell recruitment including
cytokine-induced neutrophil chemoattractant-1, cytokine-
induced neutrophil chemoattractant-2a/b, tissue inhibitor of
metalloproteinase-1, IL-1a, lipopolysaccharide-induced CXC
chemokine, monokine induced by interferon gamma,
macrophage inflammatory protein-1a, and macrophage in-
flammatory protein-3a. Besides, sildenafil use has been
demonstrated to reduce extracellular signaleregulated kinase
1/2 and p38 MAPK activation with enhanced activation of
the cytoprotective Akt pathway.43,44

3. In cases of acute lung injury, the positive effects of sildenafil
use result from inhibiting the proliferation of regulatory T
cells and the production of proinflammatory cytokines, au-
toantibodies, and modulating platelet activation, angiogenesis,
pulmonary vasoreactivity.45

4. Sildenafil use has been validated to reduce the leak of neu-
trophils into the lung, the release of proinflammatory medi-
ators TNF-a, IL-8 and IL-6, level of nitrite/nitrate, markers
of oxidative stress (3-nitrotyrosine and malondialdehyde),
lung edema, protein content in the bronchoalveolar lavage
fluid, apoptosis of epithelial cells with ultimate improve in the
respiratory parameters.46

5. In chronic obstructive pulmonary disease, sildenafil use has
been reported to improve pulmonary hemodynamics by
inhibiting hypoxic vasoconstriction and facilitating the
weaning of these patients from the ventilators owing to
improved respiratory parameters.47

6. In hypoxic conditions, sildenafil use was shown to increase the
exercise capacity in acute normobaric hypoxia by improving
arterial oxygenation.48 In their work, Gibbs49 associated sil-
denafil use with ameliorated hypoxic pulmonary vasocon-
striction with increased exercise capacity and stroke volume.
In addition, Watanabe et al50 pointed out that sildenafil use
decreases pulmonary vascular resistance and improves dyspnea
in patients with interstitial pneumonia. In their work, Gam-
mella et al51 revealed that sildenafil and erythropoietin treat-
ments protect endothelial cells in hypoxic states, whereas
Czövek et al52 reported that sildenafil use prevents the
hyperoxia-induced development of bronchial hyperreactivity
by preserving the normal end-expiratory lung volume and
inhibiting airway inflammation.

6. Although hydrogen sulfide (H2S) was reported as an endog-
enous inhibitor of PDE activity,53 sildenafil use has been
demonstrated to promote remarkably intracellular H2S pro-
duction that controls proliferation in the pulmonary arterial
smooth muscle cells by inducing vasodilation and reducing
oxidative stress and inflammation.54,55 Besides, the protein
levels of the enzymes cystathionine g-lyase and cystathionine-
b-synthase and the intracellular concentration of calcium were
also increased.

7. Prophylactic treatment with an optimal dose of sildenafil
citrate was demonstrated to significantly increase lung cGMP
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Figure 1. Schematic representation of the signaling pathways involved in the mechanism of actions of PDE5i that act by inhibiting PDE5,
the cGMP degrading enzyme, leading to increased intracellular cGMP that acts by activating many kinases, customarily PKG, but it also
triggers the activation of PKC/Akt and GSK-3, PKC can be activated by NO, in a cGMP-independent manner. cGMP inhibits MPTP for-
mation and Cyto C release. cGMP activation can, alone/through PKG, suppress the function of molecules associated with ERS and thus
prevents ERS and ERS-mediated apoptosis. Besides, PKG stimulates proteasome activity, autophagy and increases angiogenesis resulting
in the inhibition of cellular apoptosis and promotion of cell survival. The PKG pathway inhibits many cytokines, and inflammatory mediators
leading to cell survival. PDE5i could induce HO-1 expression through Nrf2. HO-1 enzyme has the affinity to inhibit cytokine and chemokine
responses such as IL-1b, IL-8, IL-33, MCP-1, MIP-1b, and apoptotic markers. The pro-inflammatory chemokine IL-6 upregulates HO-1,
which in turn inhibits IL-6 to limit the inflammatory responses. There is a positive feedback loop between HO-1 and IL-10 (anti-inflam-
matory) and a negative feedback loop between HO-1 and TNF-a (pro-inflammatory). HO-1 enzyme also produces biliverdin, CO that an-
tagonizes ROS and stimulates autophagy that antagonizes apoptosis with the ultimate cell survival. In addition, PDE5i induces H2S
production, stimulated by CSE and CBS enzymes, with an affinity to inhibit inflammatory mediators (TNF-a, IL-6), apoptotic markers
(NF.kB, Bcl2, caspase-3) and antagonizes ROS with the ultimate cell survival. Akt ¼ protein kinase B; ARE ¼ antioxidant responsive
element; Bcl2 ¼ B-cell lymphoma 2; cGMP ¼ cyclic guanosine monophosphate; CHOP ¼ C/EBP homologous protein; Co ¼ carbon
monoxide; CSE ¼ cystathionine gamma-lyase; ERS ¼ endoplasmic reticulum stress; GRP78 ¼ glucose-regulated protein 78; GSK-3 ¼
glycogen synthase kinase-3; H2S ¼ hydrogen sulfide; HO-1 ¼ hemeoxygenase-1; IFN-g ¼ interferon gamma; IL ¼ interleukin; IREI 1a ¼
inositol-requiring enzyme 1a; MCP-1 ¼ monocyte chemoattractant protein-1; MIP 1b ¼ macrophage inflammatory protein 1-b; MPTP ¼
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levels, prolongs median survival, and reduces fibrin deposi-
tion, total protein content in bronchoalveolar lavage fluid,
inflammation, and septum thickness.56
Anti-inflammatory and Cellular Implications

1. PDE5 inhibitors target the enzyme PDE5 responsible for the
selective degradation of cGMP leading to increased intracel-
lular cGMP. cGMP possesses intense anti-inflammatory ef-
fects by reducing the expression of the proinflammatory
cytokines IL-1b and TNF-a and increasing the expression of
the anti-inflammatory cytokine IL-10.57 In this context,
Dalamaga et al58 raised the role of PDE4 inhibition and cyclic
adenosine monophosphate in attenuating the cytokine storm
in COVID-19, through the upstream inhibition of proin-
flammatory molecules, particularly TNF-a, and in regulating
the proinflammatory/anti-inflammatory balance. These au-
thors believed that selective PDE4 inhibitors may represent a
promising option for the early phase of COVID-19 pneu-
monia before the cytokine storm and severe multiorgan
dysfunction take place. Besides, Seirafianpour et al59 raised
many confirmatory data on proper efficacy of pentoxifylline, a
methyl-xanthine derivative that inhibits PDE4, on controlling
COVID-19 and its consequences with antiviral, anti-
inflammatory, antioxidative, immune-modulatory, broncho-
dilator, and respiratory supportive effects.
Sex Med Rev 2021;9:15e22

http://www.smr.jsexmed.org


Potential Role of Oral PDE5 Inhibitors in COVID-19 19
2. PDE5 inhibitors have been demonstrated to be a highly
protective agent in preventing lung and kidney damage owing
to induced sepsis by the maintenance of the oxidant-
antioxidant status and decreased TNF-a.60 It has been re-
ported that increased bioavailability of cGMP is beneficial in
ameliorating the inflammation associated with intense
sepsis.61

3. The PDE5 inhibitor sildenafil has been observed to produce a
significant sustained reduction of fibrinogen, high-sensitivity
C-reactive protein, high-sensitivity IL-6, TNF-a indepen-
dent of their baseline values.62

4. Pieces of evidence pointed to the participation of cGMP-
dependent protein kinase in the complex cellular signaling
pathways related to cell survival/apoptosis.63 In their work,
Choi et al64 advocated that the PDE5 inhibitor sildenafil
citrate has antiapoptotic effects by induction of iNOS, eNOS,
and decreased BCL2-associated X protein/Bcl2 ratio. In
addition, Puzzo et al65 showed that sildenafil citrate use can
inhibit the expression of apoptotic molecules such as; caspase-
3 (proapoptotic factor), BCL2-associated X protein (an
apoptotic factor), and p38 mitogen-activated protein kinases.
Collectively, Duarte-Silva and Peixoto66 pointed out that
sildenafil citrate use inhibits apoptosis by 2 interconnected
mechanisms directly by modulating caspase expression
(through extrinsic and intrinsic pathways) and indirectly by
modulating the expression of molecules elaborated in cell
death and/or cell survival.

5. PDE5 inhibition by sildenafil was reported to suppress both
the endoplasmic reticulum stress (ERS) and ERS-induced
apoptosis by decreasing X-Box binding protein 1 expression,
phosphoprotein kinase-like ER kinase, and 78-kDa glucose-
regulated protein in a protein kinaseedependent manner.67

6. PDE5 inhibitors had been reported to induce
hemeoxygenase-1 (HO-1) enzyme expression through the
sGC-cGMP pathway.68,69 HO-1 enzyme catalyzes the
rate-limiting step in the oxidative degradation of heme to
biliverdin and CO, which share many properties with NO,
including activation of sGC signal transduction, gene
regulation.70,71 HO-1 enzyme or its reaction products as
CO are effective inducible antioxidants and antiapoptotic
molecules that protect against inflammation, cleavage of
adhesion proteins E-cadherin, and apoptosis by con-
straining both p53 and Bcl2.72 Besides, HO-1 has been
reported to have antiviral activity by inhibiting viral
growth.73,74

7. PDE5 inhibitors behave as antioxidants by inhibiting the free
radical formation supporting antioxidant redox systems.75 It
was demonstrated that the protective effect of sildenafil intake
on the epithelial cells is a consequence of xanthine oxidase
inhibition with decreased free oxygen radical production.76

8. NO inhibits platelet aggregation primarily via a cGMP-
dependent process.77,78 In their study, Gudmundsdóttir
et al79 determined that sildenafil citrate use potentiates NO-
mediated inhibition of platelet aggregation through blockade
Sex Med Rev 2021;9:15e22
of cGMP metabolism and that PDE5 inhibitors may have
imperative antiplatelet actions.

DISCUSSION

Since the outbreak of the novel COVID-19, the medical
research community is in a race to find a cure for that pandemic
with unprecedented worldwide respectful research efforts to
control the infection and save the lives of severely infected pa-
tients. Therefore, in these urgent circumstances, exploring the
beneficial repurposing effects of some drugs even being off label
(for uses other than what it was approved for) might be of po-
tential help worldwide and a realistic solution.80 Therefore, the
selection of a molecule(s) backed by years of safety margin,
widespread use, and affordability may offer the opportunity to
prevent/treat infection and its disabling complications that ensue.
Several options, such as tocilizumab,81 hydroxychloroquine and
ivermectin,82 PDE-4 inhibition,58,59 combined interferon beta-
1b, lopinavir-ritonavir, and ribavirin,83 were raised to manage
such pandemic. In addition, camostat mesylate, remdesivir,
favipiravir, baricitinib, convalescent plasma, and humanized
monoclonal antibodies were suggested as therapeutics for the
potential treatment of SARS-CoV-2.84

In this context, oral selective PDE5 inhibitors drugs possess
extensive clinical support backed by a solid mechanistic sci-
entific rationale based on their ability to target multiple aspects
of the underlying disease processes that make COVID-19 so
deadly. Therefore, PDE5 inhibitors are worthy repurposing
candidates to be thought of on the likely benefits of their
adjuvant use in the protocols aimed to combat COVID-19
infection based on the aforementioned rationales. Fortu-
nately, the available PDE5 inhibitors have many existing flex-
ible doses, forms (oral tablets, oral dispersible tablets, and so
on), and regimens (daily or on demand) that could be assessed
by the health authorities.
CONCLUSION

Optimal real-world repurposing requires a track record of
safety, affordability, and access for drug candidates. Oral PDE5
inhibitors retain many beneficial acknowledged useful off-labeled
implications with its anti-inflammatory, antioxidant, immune
response regulation, as well as antiapoptotic properties. These
aforementioned properties may support repurposing oral PDE5
inhibitors' potential adjuvant use in the protocols combating
COVID-19 manifestation especially along with the respiratory
affection. Besides, it should be highlighted that the main stake-
holder in the management of any illness is the patient and not
any particular special interest group, political party, or pharma-
ceutical manufacturer.
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